Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
J Obes Metab Syndr ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699871

RESUMO

Background: AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms. Methods: Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study. Results: Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 µM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 µM) significantly reversed these effects. Conclusion: ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.

2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474274

RESUMO

Real-time quantitative PCR (qRT-PCR) is a pivotal technique for gene expression analysis. To ensure reliable and accurate results, the internal reference genes must exhibit stable expression across varied experimental conditions. Currently, no internal reference genes for Camellia impressinervis have been established. This study aimed to identify stable internal reference genes from eight candidates derived from different developmental stages of C. impressinervis flowers. We employed geNorm, NormFinder, and BestKeeper to evaluate the expression stability of these candidates, which was followed by a comprehensive stability analysis. The results indicated that CiTUB, a tubulin gene, exhibited the most stable expression among the eight reference gene candidates in the petals. Subsequently, CiTUB was utilized as an internal reference for the qRT-PCR analysis of six genes implicated in the petal pigment synthesis pathway of C. impressinervis. The qRT-PCR results were corroborated by transcriptome sequencing data, affirming the stability and suitability of CiTUB as a reference gene. This study marks the first identification of stable internal reference genes within the entire genome of C. impressinervis, establishing a foundation for future gene expression and functional studies. Identifying such stable reference genes is crucial for advancing molecular research on C. impressinervis.


Assuntos
Camellia , Camellia/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Reação em Cadeia da Polimerase em Tempo Real/métodos , Flores/genética , Padrões de Referência
3.
Artigo em Inglês | MEDLINE | ID: mdl-38466061

RESUMO

Background: In recent years, Tiaoshen acupuncture in Traditional Chinese Medicine (TCM) has been employed for treating patients with insomnia, but the clinical efficacy remains to be substantiated. Objective: To assess the efficacy and safety of acupuncture in treating insomnia using the Tiaoshen method in TCM. Design: A systematic review and meta-analysis was conducted. Setting: The research was conducted in Shenzhen. Methods: Electronic databases, including Chinese National Knowledge Infrastructure (CNKI), Wanfang, SinoMed, Weipu, PubMed, Web of Science, EMBASE, and Cochrane databases, were retrieved up to September 15, 2023. Randomized controlled trials (RCTs) meeting inclusion criteria were screened. Quality assessment of included articles was performed using the Cochrane Risk of Bias tool. Valid data were then extracted and analyzed via meta-analysis using Review Manager 5.3. The study was registered in the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 2023100051. Results: A total of 13 articles were included, comprising 849 patients with insomnia (diagnosed as chronic insomnia or primary insomnia). Meta-analysis results indicated that acupuncture with the Tiaoshen method could decrease the Pittsburgh Sleep Quality Index (PSQI) score [RR=-3.03, 95% CI (-3.73, -2.33), P < .00001], hyperarousal (HAS) scale score [RR=-7.75, 95% CI (-12.29, -3.22), P < .0008], and fatigue scale-14 (FS-14) score [RR=-2.11, 95% CI (-2.83, -1.38), P < .00001] compared with superficial acupuncture on non-effective acupoints or conventional acupuncture manipulation. Additionally, acupuncture with the Tiaoshen method demonstrated safety. However, the funnel plot suggested the presence of publication bias. Conclusions: Acupuncture with the Tiaoshen method could enhance sleep quality and efficiency. Due to the low quality of some literature, further high-quality RCTs are needed to improve the level of evidence.

4.
Part Fibre Toxicol ; 20(1): 50, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110941

RESUMO

BACKGROUND: The association between air pollution and retinal diseases such as age-related macular degeneration (AMD) has been demonstrated, but the pathogenic correlation is unknown. Damage to the outer blood-retinal barrier (oBRB), which consists of the retinal pigment epithelium (RPE) and choriocapillaris, is crucial in the development of fundus diseases. OBJECTIVES: To describe the effects of airborne fine particulate matter (PM2.5) on the oBRB and disease susceptibilities. METHODS: A PM2.5-exposed mice model was established through the administration of eye drops containing PM2.5. Optical coherence tomography angiography, transmission electron microscope, RPE immunofluorescence staining and Western blotting were applied to study the oBRB changes. A co-culture model of ARPE-19 cells with stretching vascular endothelial cells was established to identify the role of choroidal vasodilatation in PM2.5-associated RPE damage. RESULTS: Acute exposure to PM2.5 resulted in choroidal vasodilatation, RPE tight junctions impairment, and ultimately an increased risk of retinal edema in mice. These manifestations are very similar to the pachychoroid disease represented by central serous chorioretinopathy (CSC). After continuous PM2.5 exposure, the damage to the RPE was gradually repaired, but AMD-related early retinal degenerative changes appeared under continuous choroidal inflammation. CONCLUSION: This study reveals oBRB pathological changes under different exposure durations, providing a valuable reference for the prevention of PM2.5-related fundus diseases and public health policy formulation.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Animais , Camundongos , Angiofluoresceinografia/métodos , Suscetibilidade a Doenças/patologia , Epitélio Pigmentado da Retina/patologia
5.
Nat Commun ; 14(1): 6973, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914681

RESUMO

The dense stroma of desmoplastic tumor limits nanotherapeutic penetration and hampers the antitumor immune response. Here, we report a denaturation-and-penetration strategy and the use of tin monosulfide nanoparticles (SnSNPs) as nano-sonosensitizers that can overcome the stromal barrier for the management of desmoplastic triple-negative breast cancer (TNBC). SnSNPs possess a narrow bandgap (1.18 eV), allowing for efficient electron (e-)-hole (h+) pair separation to generate reactive oxygen species under US activation. More importantly, SnSNPs display mild photothermal properties that can in situ denature tumor collagen and facilitate deep penetration into the tumor mass upon near-infrared irradiation. This approach significantly enhances sonodynamic therapy (SDT) by SnSNPs and boosts antitumor immunity. In mouse models of malignant TNBC and hepatocellular carcinoma (HCC), the combination of robust SDT and enhanced cytotoxic T lymphocyte infiltration achieves remarkable anti-tumor efficacy. This study presents an innovative approach to enhance SDT and antitumor immunity using the denaturation-and-penetration strategy, offering a potential combined sono-immunotherapy approach for the cancer nanomedicine field.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Neoplasias de Mama Triplo Negativas , Terapia por Ultrassom , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias Hepáticas/terapia , Neoplasias/terapia , Espécies Reativas de Oxigênio , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
6.
Int J Nurs Sci ; 10(4): 533-539, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38020828

RESUMO

Objectives: A noticeable increase in HIV-positive cases among women, particularly those of middle and old age, has been observed worldwide. This study aimed to describe women's perceived HIV risk, HIV/Acquired Immunodeficiency Syndrome (AIDS) knowledge, attitude, and sexual behaviors to determine factors associated with condom use among these women in Hunan, China. Methods: A cross-sectional study was conducted from July 2019 to August 2020 among 958 women aged 40 and older in four regions of Hunan, China. We collected data on sociodemographic characteristics, perceived HIV risk, HIV/AIDS knowledge and attitude, condom use, and sexual behaviors. Univariate and multivariate logistic regression were performed to identify factors related to condom use. Results: Out of 958 participants, 60.6% perceived no risk of HIV infection, and 46.8% reported they had never used a condom during their past sexual life. Those who were older, had lower monthly household income for family, had not received HIV education in the past year, were unwilling to use condoms, could not determine condom use during sexual activity, and had more negative attitudes towards HIV/AIDS and HIV-positive people were less likely to use condoms in their past sexual behaviors. Conclusions: In Hunan Province, most women aged 40 and older perceived themselves as having a low or no risk of HIV infection; their rate of condom use was low, and six factors were associated with condom use. It is imperative to strengthen HIV prevention and control programs among women aged 40 and above, particularly focusing on those who may use condoms infrequently or not at all.

7.
Front Microbiol ; 14: 1220683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886061

RESUMO

The increasing prevalence of multidrug-resistant (MDR) Gram-negative bacteria and comparatively limited options of antibiotics pose a major threat to public health worldwide. Polymyxin B is the last resort against extensively resistant Gram-negative bacterial infections. However, a large number of Gram-negative bacteria exhibited high-level resistance to Polymyxin B, bringing challenges for antimicrobial chemotherapy. Combination therapies using polymyxins and other antibiotics are recommended to treat multidrug-resistant pathogens. In this study, we selected Gram-negative bacterial strains, including Klebsiella pneumoniae and Escherichia coli, to explore whether fusidic acid and polymyxin B have a synergistic killing effect. Through broth microdilution, we observed that minimum inhibitory concentrations (MICs) against polymyxin B in the isolates tested were significantly reduced by the addition of fusidic acid. Notably, chequerboard analysis indicated a synergistic effect between polymyxin B and fusidic acid. In addition, subsequent time-kill experiments showed that the combination of polymyxin B and fusidic acid was more effective than a single drug in killing bacteria. Finally, our investigation utilizing the murine model revealed a higher survival rate in the combination therapy group compared to the monotherapy group. Our research findings provide evidence of the synergistic effect between polymyxin B and fusidic acid. Fusidic acid was shown to increase the sensitivity of multi-drug resistant E. coli and K. pneumoniae to polymyxin B, thereby enhancing its bactericidal activity. This study provides new insights into a potential strategy for overcoming polymyxin B resistance, however, further investigations are required to evaluate their feasibility in real clinical settings.

8.
Adv Drug Deliv Rev ; 203: 115116, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871748

RESUMO

Upon entering the biological milieu, nanomedicines swiftly interact with the surrounding tissue fluid, subsequently being enveloped by a dynamic interplay of biomacromolecules, such as carbohydrates, nucleic acids, and cellular metabolites, but with predominant serum proteins within the biological corona. A notable consequence of the protein corona phenomenon is the unintentional loss of targeting ligands initially designed to direct nanomedicines toward particular cells or organs within the in vivo environment. mRNA nanomedicine displays high demand for specific cell and tissue-targeted delivery to effectively transport mRNA molecules into target cells, where they can exert their therapeutic effects with utmost efficacy. In this review, focusing on the delivery systems and tissue-specific applications, we aim to update the nanomedicine population with the prevailing and still enigmatic paradigm of nano-bio interactions, a formidable hurdle in the pursuit of targeted mRNA delivery. We also elucidate the current impediments faced in mRNA therapeutics and, by contemplating prospective avenues-either to modulate the corona or to adopt an 'ally from adversary' approach-aim to chart a course for advancing mRNA nanomedicine.


Assuntos
Nanopartículas , Ácidos Nucleicos , Humanos , Nanomedicina , Estudos Prospectivos , Líquido Extracelular , Nanopartículas/metabolismo
9.
Microbiol Spectr ; 11(6): e0159623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819121

RESUMO

IMPORTANCE: Biofilms are an important virulence factor in Staphylococcus aureus and are characterized by a structured microbial community consisting of bacterial cells and a secreted extracellular polymeric matrix. Inhibition of biofilm formation is an effective measure to control S. aureus infection. Here, we have synthesized a small molecule compound S-342-3, which exhibits potent inhibition of biofilm formation in both MRSA and MSSA. Further investigations revealed that S-342-3 exerts inhibitory effects on biofilm formation by reducing the production of polysaccharide intercellular adhesin and preventing bacterial adhesion. Our study has confirmed that the inhibitory effect of S-342-3 on biofilm is achieved by downregulating the expression of genes responsible for biofilm formation. In addition, S-342-3 is non-toxic to Galleria mellonella larvae and A549 cells. Consequently, this study demonstrates the efficacy of a biologically safe compound S-342-3 in inhibiting biofilm formation in S. aureus, thereby providing a promising antibiofilm agent for further research.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Biofilmes , Aderência Bacteriana , Staphylococcus aureus Resistente à Meticilina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana
10.
Part Fibre Toxicol ; 20(1): 36, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759270

RESUMO

BACKGROUND: Limbal stem/progenitor cells (LSPCs) play a crucial role in maintaining corneal health by regulating epithelial homeostasis. Although PM2.5 is associated with the occurrence of several corneal diseases, its effects on LSPCs are not clearly understood. METHODS: In this study, we explored the correlation between PM2.5 exposure and human limbal epithelial thickness measured by Fourier-domain Optical Coherence Tomography in the ophthalmologic clinic. Long- and short-term PM2.5 exposed-rat models were established to investigate the changes in LSPCs and the associated mechanisms. RESULTS: We found that people living in regions with higher PM2.5 concentrations had thinner limbal epithelium, indicating the loss of LSPCs. In rat models, long-term PM2.5 exposure impairs LSPCs renewal and differentiation, manifesting as corneal epithelial defects and thinner epithelium in the cornea and limbus. However, LSPCs were activated in short-term PM2.5-exposed rat models. RNA sequencing implied that the circadian rhythm in LSPCs was perturbed during PM2.5 exposure. The mRNA level of circadian genes including Per1, Per2, Per3, and Rev-erbα was upregulated in both short- and long-term models, suggesting circadian rhythm was involved in the activation and dysregulation of LSPCs at different stages. PM2.5 also disturbed the limbal microenvironment as evidenced by changes in corneal subbasal nerve fiber density, vascular density and permeability, and immune cell infiltration, which further resulted in the circadian mismatches and dysfunction of LSPCs. CONCLUSION: This study systematically demonstrates that PM2.5 impairs LSPCs and their microenvironment. Moreover, we show that circadian misalignment of LSPCs may be a new mechanism by which PM2.5 induces corneal diseases. Therapeutic options that target circadian rhythm may be viable options for improving LSPC functions and alleviating various PM2.5-associated corneal diseases.


Assuntos
Doenças da Córnea , Células-Tronco , Humanos , Ratos , Animais , Córnea , Homeostase , Material Particulado/toxicidade , Células Epiteliais
11.
Arch Biochem Biophys ; 747: 109756, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714253

RESUMO

In this article, we examine the role of erythropoietin-producing hepatocellular receptor A2 (EphA2) in the apoptosis of lens epithelial cells (LECs) in H2O2 and UV radiation-induced cataracts. We treated SRA01/04 cells with H2O2 or ultraviolet (UV) radiation to create a cataract cell model. We constructed a cataract lens model by exposing mice to UV radiation. We used CCK8 assays, Annexin V-FITC analysis, and immunohistochemical staining to explore proliferation and apoptosis of the cataract model. Thereafter, we used quantitative real-time PCR (qPCR) analysis, Western blot assays, and immunofluorescence to determine gene and protein expression levels. We also employed Crispr/Cas9 gene editing to create an EphA2 knockout in SRA01/04 cells. Results: H2O2 or UV radiation induced SRA01/04 cells showed EphA2 gene upregulation. CCK8 and apoptosis assays showed that EphA2 over-expression (OE) reduced epithelial cell apoptosis, but knockout of EphA2 induced it in response to H2O2 and UV radiation, respectively. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on cell apoptosis. In vivo, the EphA2 protein level increased in the lenses of UV-treated mice. Our results showed that EphA2 was upregulated in SRA01/04 cells in response to H2O2 and UV radiation. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on H2O2 and UV radiation-induced cell apoptosis. We confirmed this change with an experiment on UV-treated mice. The present study established a novel association between EphA2 and LEC apoptosis.

12.
ACS Appl Mater Interfaces ; 15(32): 38230-38246, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37535406

RESUMO

Morbid dermal templates, microangiopathy, and abnormal inflammation are the three most critical reasons for the scarred healing and the high recurrence rate of diabetic wounds. In this present study, a combination of a methacrylated decellularized extracellular matrix (ECMMA, aka EM)-based hydrogel system loaded with copper-epigallocatechin gallate (Cu-EGCG) capsules is proposed to fabricate bio-printed dermal scaffolds for diabetic wound treatment. Copper ions act as a bioactive element for promoting angiogenesis, and EGCG can inhibit inflammation on the wound site. In addition to the above activities, EM/Cu-EGCG (E/C) dermal scaffolds can also provide optimized templates and nutrient exchange space for guiding the orderly deposition and remodeling of ECM. In vitro experiments have shown that the E/C hydrogel can promote angiogenesis and inhibit the polarization of macrophages to the M1 pro-inflammatory phenotype. In the full-thickness skin defect model of diabetic rats, the E/C dermal scaffold combined with split-thickness skin graft transplantation can alleviate pathological scarring via promoting angiogenesis and driving macrophage polarization to the anti-inflammatory M2 phenotype. These may be attributed to the scaffold-actuated expression of angiogenesis-related genes in the HIF-1α/vascular endothelial growth factor pathway and decreased expression of inflammation-related genes in the TNF-α/NF-κB/MMP9 pathway. The results of this study show that the E/C dermal scaffold could serve as a promising artificial dermal analogue for solving the problems of delayed wound healing and reulceration of diabetic wounds.


Assuntos
Cicatriz , Diabetes Mellitus Experimental , Ratos , Animais , Cobre/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Inflamação , Hidrogéis/farmacologia , Impressão Tridimensional
13.
J Transl Med ; 21(1): 496, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488572

RESUMO

BACKGROUND: Substantial studies have demonstrated that oxidative stress placenta and endothelial injury are considered to inextricably critical events in the pathogenesis of preeclampsia (PE). Systemic inflammatory response and endothelial dysfunction are induced by the circulating factors released from oxidative stress placentae. As a novel biomarker of oxidative stress, advanced oxidation protein products (AOPPs) levels are strongly correlated with PE characteristics. Nevertheless, the molecular mechanism underlying the effect of factors is still largely unknown. METHODS: With the exponential knowledge on the importance of placenta-derived extracellular vesicles (pEVs), we carried out lncRNA transcriptome profiling on small EVs (sEVs) secreted from AOPPs-treated trophoblast cells and identified upregulated lncRNA TDRKH-AS1 as a potentially causative factor for PE. We isolated and characterized sEVs from plasma and trophoblast cells by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. The expression and correlation of lncRNA TDRKH-AS1 were evaluated using qRT-PCR in plasmatic sEVs and placentae from patients. Pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs was performed to detect the TDRKH-AS1 function in vivo. To investigate the potential effect of sEVs-derived TDRKH-AS1 on endothelial function in vitro, transcriptome sequencing, scanning electron Microscopy (SEM), immunofluorescence, ELISA and western blotting were conducted in HUVECs. RNA pulldown, mass spectrometry, RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP) and coimmunoprecipitation (Co-IP) were used to reveal the latent mechanism of TDRKH-AS1 on endothelial injury. RESULTS: The expression level of TDRKH-AS1 was significantly increased in plasmatic sEVs and placentae from patients, and elevated TDRKH-AS1 in plasmatic sEVs was positively correlated with clinical severity of the patients. Moreover, pregnant mice injected with TDRKH-AS1-riched trophoblast sEVs exhibited a hallmark feature of PE with increased blood pressure and systemic inflammatory responses. Pyroptosis, an inflammatory form of programmed cell death, is involved in the development of PE. Indeed, our in vitro study indicated that sEVs-derived TDRKH-AS1 secreted from AOPPs-induced trophoblast elevated DDIT4 expression levels to trigger inflammatory response of pyroptosis in endothelial cells through interacting with PDIA4. CONCLUSIONS: Herein, results in the present study supported that TDRKH-AS1 in sEVs isolated from oxidative stress trophoblast may be implicated in the pathogenesis of PE via inducing pyroptosis and aggravating endothelial dysfunction.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , RNA Longo não Codificante , Feminino , Gravidez , Humanos , Animais , Camundongos , Células Endoteliais , Piroptose , Produtos da Oxidação Avançada de Proteínas , Trofoblastos , Proteínas de Ligação a RNA , Fatores de Transcrição , Isomerases de Dissulfetos de Proteínas
14.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298515

RESUMO

In this study, the mitochondrial genomes of two calla species, Zantedeschia aethiopica Spreng. and Zantedeschia odorata Perry., were assembled and compared for the first time. The Z. aethiopica mt genome was assembled into a single circular chromosome, measuring 675,575 bp in length with a 45.85% GC content. In contrast, the Z. odorata mt genome consisted of bicyclic chromosomes (chromosomes 1 and 2), measuring 719,764 bp and exhibiting a 45.79% GC content. Both mitogenomes harbored similar gene compositions, with 56 and 58 genes identified in Z. aethiopica and Z. odorata, respectively. Analyses of codon usage, sequence repeats, gene migration from chloroplast to mitochondrial, and RNA editing were conducted for both Z. aethiopica and Z. odorata mt genomes. Phylogenetic examination based on the mt genomes of these two species and 30 other taxa provided insights into their evolutionary relationships. Additionally, the core genes in the gynoecium, stamens, and mature pollen grains of the Z. aethiopica mt genome were investigated, which revealed maternal mitochondrial inheritance in this species. In summary, this study offers valuable genomic resources for future research on mitogenome evolution and the molecular breeding of calla lily.


Assuntos
Araceae , Genoma Mitocondrial , Lilium , Zantedeschia , Zantedeschia/genética , Araceae/genética , Genoma Mitocondrial/genética , Lilium/genética , Filogenia
15.
Angew Chem Int Ed Engl ; 62(41): e202308413, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380606

RESUMO

Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and ß-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Camundongos , Animais , Macrófagos Associados a Tumor , Macrófagos/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Melanoma/patologia , Nanopartículas/uso terapêutico , Microambiente Tumoral
16.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108264

RESUMO

The AP2/ERF transcription factor family is one of the most important gene families in plants and plays a vital role in plant abiotic stress responses. Although Erianthus fulvus is very important in the genetic improvement of sugarcane, there are few studies concerning AP2/ERF genes in E. fulvus. Here, we identified 145 AP2/ERF genes in the E. fulvus genome. Phylogenetic analysis classified them into five subfamilies. Evolutionary analysis showed that tandem and segmental duplication contributed to the expansion of the EfAP2/ERF family. Protein interaction analysis showed that twenty-eight EfAP2/ERF proteins and five other proteins had potential interaction relationships. Multiple cis-acting elements present in the EfAP2/ERF promoter were related to abiotic stress response, suggesting that EfAP2/ERF may contribute to adaptation to environmental changes. Transcriptomic and RT-qPCR analyses revealed that EfDREB10, EfDREB11, EfDREB39, EfDREB42, EfDREB44, EfERF43, and EfAP2-13 responded to cold stress, EfDREB5 and EfDREB42 responded to drought stress, and EfDREB5, EfDREB11, EfDREB39, EfERF43, and EfAP2-13 responded to ABA treatment. These results will be helpful for better understanding the molecular features and biological role of the E. fulvus AP2/ERF genes and lay a foundation for further research on the function of EfAP2/ERF genes and the regulatory mechanism of the abiotic stress response.


Assuntos
Saccharum , Filogenia , Saccharum/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas , Família Multigênica
17.
Adv Mater ; 35(25): e2300272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015024

RESUMO

Optical filters have aroused tremendous excitement in advanced photonic instruments and modern digital displays due to their flexible capability of spectrum manipulation. Plasmonic metasurfaces of narrow bandwidth, high spectral contrast, and robust structure tolerance are highly desired for optical filtration (especially in the visible regime) but rather challenging as large spectral broadening from intrinsic ohmic loss and design/fabrication deviations. Here the high-performing sodium-based metasurfaces are demonstrated for optical filtration across 450 to 750 nm by unique structure design of spatially decoupled concave surfaces and precise fabrication through templated solidification of liquid metals. Thanks to the distinct suppression of metallic loss as well as fabrication tolerance of interfacial structures, the as-prepared concave metasurfaces enable a minimum linewidth of ≈15 nm, a maximal optical contrast of ≈93%, and a high measure-to-design spectral match ratio ≈1500. These results have for the first time pushed the operation wavelengths of sodium-based plasmonic devices from infrared to visible which in turn demonstrates the capability of filling the blank of commercial dielectric optical filters thus far.

18.
Plant Physiol Biochem ; 199: 107706, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119548

RESUMO

In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Saccharum , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Saccharum/genética , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Secas , Antioxidantes/metabolismo , Estresse Fisiológico/genética
19.
Front Plant Sci ; 14: 1097265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875584

RESUMO

HD-Zip is a plant-specific transcription factor that plays an important regulatory role in plant growth and stress response. However, there have been few reports on the functions of members of the physic nut HD-Zip gene family. In this study, we cloned a HD-Zip I family gene from physic nut by RT-PCR, and named JcHDZ21. Expression pattern analysis showed that JcHDZ21 gene had the highest expression in physic nut seeds, and salt stress inhibited the expression of JcHDZ21 gene. Subcellular localization and transcriptional activity analysis showed that JcHDZ21 protein is localized in the nucleus and has transcriptional activation activity. Salt stress results indicated that JcHDZ21 transgenic plants were smaller and had more severe leaf yellowing compared to those of the wild type. Physiological indicators showed that transgenic plants had higher electrical conductivity and MDA content, and lower proline and betaine content compared with wild-type plants under salt stress. In addition, the expression of abiotic stress-related genes in JcHDZ21 transgenic plants was significantly lower than that in wild type under salt stress. Our results showed that ectopic expression of JcHDZ21 increased the sensitivity of transgenic Arabidopsis to salt stress. This study provides a theoretical basis for the future application of JcHDZ21 gene in the breeding of physic nut stress-tolerant varieties.

20.
BMC Plant Biol ; 23(1): 81, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750954

RESUMO

BACKGROUND: The cytoplasmic male sterility (CMS) of rice is caused by chimeric mitochondrial DNA (mtDNA) that is maternally inherited in the majority of multicellular organisms. Wild rice (Oryza rufipogon Griff.) has been regarded as the ancestral progenitor of Asian cultivated rice (Oryza sativa L.). To investigate the distribution of original CMS source, and explore the origin of gametophytic CMS gene, a total of 427 individuals with seventeen representative populations of O. rufipogon were collected in from Dongxiang of Jiangxi Province to Sanya of Hainan Province, China, for the PCR amplification of atp6, orfH79 and B-atp6-orfH79, respectively. RESULTS: The B-atp6-orfH79 and its variants (B-atp6-GSV) were detected in five among seventeen populations (i.e. HK, GZ, PS, TL and YJ) through PCR amplification, which could be divided into three haplotypes, i.e., BH1, BH2, and BH3. The BH2 haplotype was identical to B-atp6-orfH79, while the BH1 and BH3 were the novel haplotypes of B-atp6-GSV. Combined with the high-homology sequences in GenBank, a total of eighteen haplotypes have been revealed, only with ten haplotypes in orfH79 and its variants (GSV) that belong to three species (i.e. O. rufipogon, Oryza nivara and Oryza sativa). Enough haplotypes clearly demonstrated the uniform structural characteristics of the B-atp6-orfH79 as follows: except for the conserved sequence (671 bp) composed of B-atp6 (619 bp) and the downstream followed the B-atp6 (52 bp, DS), and GSV sequence, a rich variable sequence (VS, 176 bp) lies between the DS and GSV with five insertion or deletion and more than 30 single nucleotide polymorphism. Maximum likelihood analysis showed that eighteen haplotypes formed three clades with high support rate. The hierarchical analysis of molecular variance (AMOVA) indicated the occurrence of variation among all populations (FST = 1; P < 0.001), which implied that the chimeric structure occurred independently. Three haplotypes (i.e., H1, H2 and H3) were detected by the primer of orfH79, which were identical to the GVS in B-atp6-GVS structure, respectively. All seventeen haplotypes of the orfH79, belonged to six species based on our results and the existing references. Seven existed single nucleotide polymorphism in GSV section can be translated into eleven various amino acid sequences. CONCLUSIONS: Generally, this study, indicating that orfH79 was always accompanied by the B-atp6, not only provide two original CMS sources for rice breeding, but also confirm the uniform structure of B-atp-orfH79, which contribute to revealing the origin of rice gametophytic CMS genes, and the reason about frequent recombination of mitochondrial DNA.


Assuntos
Oryza , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Oryza/genética , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA